close

Biomedical Engineering Principles

Arthur B. Ritter, Vikki Hazelwood, Antonio Valdevit, Alfred N. Ascione · ISBN 9781138073241
Biomedical Engineering Principles | Zookal Textbooks | Zookal Textbooks
Format:
Out of stock
$112.00  Save $5.67
$106.33
-
+
Publisher Taylor and Francis
Author(s) Arthur B. Ritter / Vikki Hazelwood / Antonio Valdevit / Alfred N. Ascione
Edition 2
Published 28th June 2018
Related course codes

Current demand in biomedical sciences emphasizes the understanding of basic mechanisms and problem solving rather than rigid empiricism and factual recall. Knowledge of the basic laws of mass and momentum transport as well as model development and validation, biomedical signal processing, biomechanics, and capstone design have indispensable roles in the engineering analysis of physiological processes. To this end, an introductory, multidisciplinary text is a must to provide the necessary foundation for beginning biomedical students.



Assuming no more than a passing acquaintance with molecular biology, physiology, biochemistry, and signal processing, Biomedical Engineering Principles, Second Edition provides just such a solid, accessible grounding to this rapidly advancing field. Acknowledging the vast range of backgrounds and prior education from which the biomedical field draws, the organization of this book lends itself to a tailored course specific to the experience and interests of the student.


Divided into four sections, the book begins with systems physiology, transport processes, cell physiology, and the cardiovascular system. Part I covers systems analysis, biological data, and modeling and simulation in experimental design, applying concepts of diffusion, and facilitated and active transport. Part II presents biomedical signal processing, reviewing frequency, periodic functions, and Fourier series as well as signal acquisition and processing techniques.



Part III presents the practical applications of biomechanics, focusing on the mechanical and structural properties of bone, musculoskeletal, and connective tissue with respect to joint range, load bearing capacity, and electrical stimulation. The final part highlights capstone design, discussing design perspectives for living and nonliving systems, the role of the FDA, and the project timeline from inception to proof of concept.



Cutting across many disciplines, Biomedical Engineering Principles, Second Edition offers illustrative examples as well as problems and discussion questions designed specifically for this book to provide a readily accessible, widely applicable introductory text.

Translation missing: en.general.search.loading