close

Strengthening Mechanisms in Crystal Plasticity

Ali Argon · ISBN 9780198516002
Strengthening Mechanisms in Crystal Plasticity | Zookal Textbooks | Zookal Textbooks
Out of stock
$229.00  Save $11.59
$217.41
-
+
Zookal account needed
Read online instantly with Zookal eReader
Access online & offline
$105.35
Note: Subscribe and save discount does not apply to eTextbooks.
-
+
Publisher Oxford University Press UK
Author(s) Ali Argon
Published 1st August 2007
Related course codes
The strengthening of metals by a variety of means has been of interest over much of history. However, the elucidation of the actual mechanisms involved in the processes of alloying and work hardening, and the related processes of metals as a scientific pursuit, has become possible only through the parallel developments in dislocation theory and in definitive experimental tools of electron microscopy and X-ray diffraction. The important developments over the past
several decades in the mechanistic understanding of the often complex processes of interaction of dislocations with each other, with solute atoms and with precipitates during plastic flow have largely
remained scattered in the professional literature. This has made it difficult for students and professionals to have ready access to this subject as a whole. While there are some excellent reviews of certain aspects of the subject, there is presently no single comprehensive coverage available of the central mechanisms and their modelling. The present book on Strengthening Mechanisms in Crystal Plasticity provides such a coverage in a generally transparent and readily
understandable form. It is intended as an advanced text for graduate students in materials science and mechanical engineering. The central processes of strengthening that are presented are modeled by
dislocation mechanics in detail and the results are compared extensively with the best available experimental information. The form of the coverage is intended to inspire students or professional practitioners in the field to develop their own models of similar or related phenomena and, finally, engage in more advanced computational simulations, guided by the book.
Translation missing: en.general.search.loading